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ABSTRACT

This investigation is directed toward understanding the role of coupled me-

chanical and thermal effects in the linear stability of an isothermal antiplane shear

motion which involves a single planar phase boundary in a non-elliptic thermoe-

lastic material which has multiple elliptic phases. When the relevant process is

static-so that the phase boundary does not move prior to the imposition of the

disturbance-it is shown to be linearly stable. However, when the process involves

a steadily propagating phase boundary it may be linearly unstable. Various con-

ditions sufficient to guarantee the linear instability of the process are obtained.

These conditions depend on the monotonicity of the kinetic response function-a

constitutively supplied entity which relates the driving traction acting on a phase

boundary to the local absolute temperature and the normal velocity of the phase

boundary-and, in certain cases, on the spectrum of wave-numbers associated

with the perturbation to which the process is subjected. Inertia is found to play

an insignificant role in the qualitative features of the aforementioned sufficient

conditions. It is shown, in particular, that instability can arise even when the

normal velocity of the phase boundary is an increasing function of the driving

traction if the temperature dependence in the kinetic response function is of a

suitable nature. Significantly, the instability which is present in this setting oc-

curs only in the long waves of the Fourier decomposition of the moving phase

boundary, implying that the interface prefers to be highly wrinkled.



-Ill-

TABLE OF CONTENTS

1. Introduction ......................................................... 1

2. P relim inaries ......................................................... 5

2.1. Notation, kinematics and balance principles ........................ 5

2.2. Rate of entropy production and driving traction ................... 10

2.3. Finite thermoelasticity ............................................ 11

2.4. Constitutive specialization ........................................ 12

2.5. Completion of constitutive assumptions via the kinetic relation .... 17

2.6. Thermoelastic antiplane shear motions of a special material ....... 18

3. Linear stability of a process involving a steadily moving planar

phase boundary in a three-phase thermoelastic material ....... 22

3.1. Description of the base process ................................... 22

3.2. Perturbation of the base process .................................. 26

3.3. Linearization of the field equations associated with the process initiated

by the perturbation ............................................... 29

3.4. Linearization of the jump conditions and kinetic relation associated with

the process initiated by the perturbation .......................... 31

3.5. Specialization of the base process and the associated linearized descrip-

tion of the post perturbation process .............................. 36

3.6. Normal mode analysis for a base process involving a static interface in

the absence of inertia ............................................ 38

3.7. Energy analysis for a base process involving a static interface with iner-

tial effects present ................................................ 42

3.8. Normal mode analysis for a base process involving a moving interface

with or without inertial effects .................................... 45

3.9. Conclusion ....................................................... 48

R eferences .......................................................... 51



-1-

1. INTRODUCTION

Recently [91, motivated by a desire to determine whether continuum me-

chanical models for displacive solid-solid phase transformations can predict the

emergence of plate-like or dendritic structures from states involving planar phase

boundaries, a purely mechanical two-phase dynamical process in a non-elliptic

generalized neo-Hookean material was considered. The process involved an an-

tiplane shear motion with a single steadily propagating planar phase boundary

separating high and low strain elliptic phases of the relevant material. In a frame

moving with the phase boundary, the shear strain field was piecewise homogeneous

and the angle between the limiting values of the gradient of the out-of-plane dis-

placement field on either side of the phase boundary was zero-so that the phase

boundary was, for each instant of the motion, of normal type. The linear stability

of this process with respect to a broad class of perturbations was then investi-

gated. It was shown that a necessary and sufficient condition for the process to

be linearly stable was that the kinetic response function-which gives the driving

traction acting on a phase boundary in terms of the normal velocity of the phase

boundary, or vice-versa-be a locally increasing function of its argument at the

value corresponding to the base process. A necessary consequence of this stability

criterion is that, in order for the process to be unstable, the kinetic response func-

tion must exhibit a non-monotonic dependence on its argument. Non-monotonic

kinetic response functions are admissible under the Clausius-Duhem version of

the second law of thermodynamics (specialized to isothermal conditions for the

purposes of the purely mechanical process discussed in [9]); the work of OWEN,

SCHOEN & SRINIVASAN [15] implies, furthermore, that a non-monotonic relation

between interfacial driving traction and normal velocity may be operative in the

unstable kinetics which are observed to accompany the emergence and growth of

plate-like structures. Under such kinetics, the results obtained [9] suggest than

an evolution from a planar to a plate-like phase boundary morphology might be

possible with the confines of a purely mechanical theory.
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Thermal effects are manifestly absent from the purely mechanical investi-

gation in [9]. The experimental work of CLAPP & Yu [5], GRUJICIC, OLSON &

OWEN [10] and CONG DAHN, MORPHY & RAJAN [6] indicates that temperature

effects do play an intrinsic, if not entirely understood, part in the kinetics of

phase boundaries in displacive solid-solid phase transformations. The investiga-

tion which follows is, therefore, directed toward understanding the outcome, with

regard to the morphological stability of states involving planar phase boundaries,

when thermal as well as mechanical effects are taken into consideration in a model

for displacive solid-solid phase transformations. Of particular interest is the ques-

tion of whether thermal effects allow for an evolution from planar to plate-like

phase boundary morphology under kinetics which are mechanically stable in the

sense of [9]. The paper is organized as follows.

Chapter 2 is dedicated to preliminaries. Following a synopsis of the notation

to be used, Section 2.1 introduces the kinematics and fundamental balance prin-

ciples which will be needed thereafter. Section 2.2 focuses on the rate of entropy

production due to the presence of phase boundaries and introduces the associ-

ated notion of the driving traction acting on a phase boundary. In Section 2.3 a

thermoelastic material is defined and in Section 2.4 the particular class of ther-

moelastic materials which will be used in the forthcoming analysis is introduced.

Section 2.5 is concerned with the kinetic relation and allied kinetic response func-

tion. In the final section of Chapter 2 the kinematics are specialized to those of

antiplane shear and a thermoelastic antiplane shear motion is defined.

Chapter 3 is devoted to the linear stability analysis of an isothermal two-

phase process which involves a steadily propagating planar phase boundary in

an arbitrary thermoelastic material within the class introduced in Section 3.4.

The relevant process, which is a straightforward generalization of that used in the

purely mechanical investigation [9], is introduced in Section 3.1, while the class

of perturbations to which it will be subjected is put forth in Section 3.2. Each

admissible perturbation involves, in general, a disturbance of the configuration
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of the phase boundary and of the displacement, velocity and temperature fields

in a small neighborhood of the phase boundary. All disturbances are assumed

to be small in some appropriate sense. The kinematics of the perturbation are

restricted to those of antiplane shear. It is assumed that the post-perturbation

process is a thermoelastic antiplane shear and involves only one phase boundary.

Sections 3.3 and 3.4 address, respectively, the linearization-about the unper-

turbed process-of the field equations which hold away from the phase boundary

and the jump conditions and kinetic relation which hold on the phase boundary.

After a specialization of the base process, a summary of the complete linearized

system of field equations, jump conditions, kinetic relation and boundary and

initial conditions which describe the process generated by the perturbation is

presented in Section 3.5. As in [9], both the inertial and inertia-free cases are

included. The combined results of Sections 3.6 and 3.7 show that whenever it

is static, regardless of the presence of inertial effects, the base process is linearly

stable with respect to all perturbations of the type introduced in Section 3.2.

Section 3.8 deals with the case where the base process involves an interface prop-

agating at non-zero velocity. A normal mode analysis is performed which leads

to a variety of conditions sufficient for the instability of the undisturbed process.

These conditions depend on the monotonicity properties of the kinetic response

function. Highlighted in Section 3.9 is one set of sufficient conditions which is

of particular interest. The relevant conditions alter the conclusions reached in

the purely mechanical context considered in [91 in two ways. First, in contrast

to the results obtained in the latter setting, instability may arise even when the

normal velocity of the phase boundary is a monotonically increasing function of

driving traction as long as the temperature dependence in the kinetic response

function is of an appropriate nature. Second, the instability that arises in these

thermomechanical circumstances occurs only in the long waves of the the Fourier

decomposition of the moving phase boundary, suggesting that the interface favors

a highly wrinkled configuration. This conclusion is akin to that reached in simi-
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lar linear stability analyses performed within the context of models for dendritic

crystal growth where an otherwise thermally unstable process is stabilized for

sufficiently large wave-numbers by the inclusion of surface tension at the inter-

face in lieu of including mechanical effects.' The final topic addressed in Section

3.9 pertains to the physical suitability of kinetic response functions which are

mechanically stable but thermally unstable.

I See, for example, LANGER [13], MULLINS & SEKERKA [14] and STRAIN [16].
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2. PRELIMINARIES

2.1. Notation, kinematics and balance principles. In the following R

and C denote the sets of real and complex numbers. The intervals (0, oo) and

[0, oo) are represented by R+ and R+. The symbol R", with n equal to 2 or 3,

represents real n-dimensional space equipped with the standard Euclidean norm.

If U is a set, then its closure, interior and boundary are designated by U, U, and

U, respectively. The complement of a set V with respect to U is written as

U \ V. Given a function b : U --* W and a subset V of U, (V) stands for the

image of V under the map 7P.

Vectors and linear transformations from R 3 to R 3 (referred to herein as

tensors) are distinguished from scalars with the aid of boldface type-lower and

upper case for vectors and tensors, respectively. Let a and b be vectors in 1R3,

their inner product is then written as a- b; the Euclidean norm of a is, further,

written as Ial = ia -.a". The set of unit vectors-that is, vectors with unit

Euclidean norm-in R 3 is designated by A. The symbol C refers to the set
+

of tensors, C+ denotes the set of all tensors with positive determinant, and S

stands for the collection of all symmetric positive definite tensors. If F is in £

then FT represents its transpose; if, moreover, det F # 0, then the inverse of F

and its transpose are written as F- 1 and F - T, respectively. The notation a ® b

refers to the tensor A, formed by the outer product of a with b, defined such that

Ac = (b- c)a for any vector c in R3. If A and B are tensors then their inner

product is written as A • B = tr ABT.

When component notation is used, Greek indices range only over {1, 2};

summation of repeated indices over the appropriate range is implicit. A subscript

preceded by a comma denotes partial differentiation with respect to the corre-

sponding coordinate. Also, a superposed dot signifies partial differentiation with

respect to time.

Consider now a body B which, in a reference configuration, occupies a region

7? contained in -R3 A motion of B on a time interval T C R is characterized by
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a one-parameter family of invertible mappings k(-, t) : R- * Rt, with

k(x,t) = x + u(x,t) V(x,t) EM,(2.1.1)

where M = R1 x T represents the trajectory of the motion. Assume that the

deformation k, or equivalently the displacement u, is continuous and possesses

piecewise continuous first and second partial derivatives on M. Let St be the set

of points contained in R1 defined so that, at each instant t in T, S(.,t) is twice

continuously differentiable on the set R \ St. Let the set E be defined by

E = {(x,t)Ix E St,t E T}. (2.1.2)

Introduce the deformation gradient tensor F: M \ E - by

F(x,t) = Vyk(x,t) V(x,t) E M \ E, (2.1.3)

where the associated Jacobian determinant, J : M \ E -- 1R, of j" is restricted to

be strictly positive on its domain of definition:

J(x,t) = det F(x,t) > 0 V(x,t) E M\.

+

Hence, F : M \ E- f+. The left Cauchy-Green tensor G : M\ -+ S

corresponding to the deformation k is given by

G(x,t) = F(x,t)FT(x,t) V(x,t) E M \ E. (2.1.4)

The deformation invariants associated with k' exist on M \ E and are supplied

through the fundamental scalar invariants of G:

II(G) = trG, I2 (G) = ((trG)2 - tr(G 2 )), 13 (G) = det G. (2.1.5)
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With the above kinematic antecedents in place introduce the nominal mass

density p : 'R --, 1+, the nominal body force per unit mass b : M -+ R 3, and the

nominal stress tensor S : M \ E -- C, and suppose that p is constant on T and b

is continuous on M, while S is piecewise continuous on M, continuous on M \ EV,

and has a piecewise continuous gradient on M. Let p. be the mass density in

the deformed configuration associated with :k. Given a regular subregion 1' of

IZ, with OP f St a set of measure zero in 8P for each t in T, let m : OP -. N

denote the unit outward normal to OP. Then the global balance laws of mass,

linear momentum, and angular momentum require that

J pdV = J p. dV on T, (2.1.6)

1P SICP)

JSmdA+JpbdV=JpidV on T, (2.1.7)

and

J :ASmdA +JApbdV = 'ApdV on T, (2.1.8)

respectively, for every such regular subregion P contained in .

Next, introduce the nominal internal energy per unit mass e M \ 27 --+ 1,

the nominal heat flux q :M \ -- R 1, and the nominal heat supply per unit

mass r : M \ E --- R. Suppose that e and q are piecewise continuous on M,

continuous on M \ E, and have piecewise continuous partial derivatives on M,

and that r is continuous on M. The first law of thermodynamics requires that

J(Sm.u+q.m)dA+Jp(b.u+r)dV= p(C+,.Iix2)dV on T,(2.1.9)

for every regular subregion P contained in I' such that OP n St a set of measure

zero in OP for each t in 7.
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Finally, introduce the nominal entropy per unit mass rI M \ Z --+ R and

the nominal absolute temperature 0 : M - R. Stipulate that 77 is piecewise

continuous on M, continuous on M \ EU, and has piecewise continuous first partial

derivatives on M, and that 0 is continuous on M with piecewise continuous first

partial derivatives on M. The Clausius-Duhem version of the second law of

thermodynamics requires that the rate of entropy production F(-; 1') : T - R

satisfies

/r
r(.;P) =JpdV - qMdA - J- dV > 0 on T, (2.1.10)

for every regular subregion P contained in IZ such that "9 l St a set of measure

zero in o for each t in T.

Localization of the balance laws (2.1.6)-(2.1.9) and the imbalance law (2.1.10)

at an arbitrary point contained in the interior of M \ Z yields the following

familiar field equations and field inequality:

p=p.(y)J on M\E,

V.S+pb=pfi on . ,

SFT= FST on M\,, (2.1.11)

S.F+V q+pr=pi on M ,

() + <0 p on M\ E.

Suppose, from now on, that the set St is a regular surface for every t in T.

The set E then represents the trajectory of a surface of discontinuity in F, S and,

perhaps, c, q and 71. Let g(., t) denote a generic field quantity g(., t) : St --+ R

which is discontinuous across St at the instant t in T. Define the jump [g(-, t)]

of g(., t) across St by

[g(x,t)! = lim (g(x + hn(x,t),t) -g(x- hn(x,t),t)) V(x,t) E E, (2.1.12)
h', O
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where n(.,t) : St --+ NV is a unit normal to St at each t in T. Then, localization of

(2.1.6)-(2.1.10) at an arbitrary element of E yields the following jump conditions

[p,(k)J] = 0 on ,

[SnJ +pV[i]=O on E,

[nn=0 on Z, (2.1.13)

1
pV77J+ [q.n1.<0 on E,

where V(.,t) : St --+ R11 is the component of the velocity of the surface St in the

direction of n(.,t) at the instant t in T.

Equations (2.1.11)1 and (2.1.13), are, evidently, completely decoupled from

equations (2.1.11)2,3,4,5 and (2.1.13)2,3,4; that is, given a solution to, say, a bound-

ary value problem involving (2.1.11)2,3,4,5 and (2.1.13)2,3,4, p. can be calculated

a posteriori. For this reason equations (2.1.11), and (2.1.13), will be disregarded

in the subsequent analysis.

In this investigation an inertia-free motion is defined as one wherein the

inertial terms on the right hand sides of the global balance equations (2.1.7) and

(2.1.8) are replaced by the zero vector. In the context of an inertia-free motion

the field equation (2.1.11)2 simplifies to read

V.S+pb=O on M\Z, (2.1.14)

and the jump condition (2.1.13)2 becomes

[Snj=0 on E. (2.1.15)

Equations (2.1.11)1,3,4,5 and (2.1.13)1,3,4 remain, of course, unaltered.

In addition to the jump conditions given in (2.1.13) in the inertial case or

(2.1.13)1,3,4 and (2.1.15) in the inertia-free case, the stipulated continuity of S3



and 6 gives the following kinematic jump conditions

[u] =O0 on Z, 10]1=0 on Z.(2.1.16)

2.2. Rate of entropy production and driving traction. Using the field

equations (2.1.11), the jump conditions (2.1.13) , and the assumed smoothness of

the deformation k, ABEYARATNE & KNOWLES [1] have demonstrated that for any

continuum the rate of entropy production r'(.; 1') can, for any regular region 1-

contained in IZ, be represented in the form

f'(t; 1') li., (t; 1'P ~t) + +F(;1'ct~T (2.2.1)

where Fil(.;1'), T,..(;P), and T. (.;1P) are defined by

&C (; P) J (S Fp(P+O i))fdV on T

P\S'

r.(; P)= J LqV~dV on T,(2.)

V\S8

1'.(-; P)= J (p1?i- ((S)) - FJ)Vn dV on T

with tP M \ Z~ --+ R representing the nominal Helmholtz free energy per unit

mass in defined in terms of c, 0 and YI by

0=-87on M\E, (2.2.3)

and, where-given a generic field quantity g(-, t) :St --+ JR which jumps across St

at the instant t in T-((g(., t))) is defined through

((g(x,t))) = im. (g(x+hn(x,t),t) +g(x-hn(x,t),t)) V(X,t) EE. (2.2.4)
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The representation (2.2.1) additively decomposes the total rate of entropy

production r(-; P), at the instant t in T, in the regular region P contained in IZ

into three parts. The first two terms in the decomposition F1o('; P) and Fr0n('; P)

are the contributions to the rate of entropy production due, respectively, to local

mechanical dissipation and heat conduction away from the surface St, while the

third term '.(.; *P) represents the entropy production rate due to the motion of

the surface St.

Motivated by (2.2.2)3 define the driving traction f(., t) : St - R which acts

on the surface St at the instant t in T by

.f(.,t) -- 1 [(.,t)J - ((S(.,t))) . [F(.,t)J on St Vt E T. (2.2.5)

In the absence of inertial effects it can be demonstrated that (2.2.5) reduces to

f(.,t) = p[O(.,t)]- S(.,t). [F(-,t)l on St Vt T, (2.2.6)

where S(-,t) (resp., S(.,t)) is the limiting value of the field S(.,t) on the side of

the interface into which the unit normal n(., t) is (resp., is not) directed at the

instant t in T.

Now, from (2.2.1) and (2.2.2)3, localization of the imbalance law (2.1.10) at

an arbitrary element of Z' yields the following alternative to (2.1.13)4:

fV, _> 0 on E', (2.2.7)

with f given by (2.2.5) or (2.2.6) depending on whether inertial effects are included

or not. Observe , from (2.2.2), that under isothermal conditions the total rate of

entropy production r(-; P') in a region P takes the form of the rate of mechanical

dissipation per unit temperature.

2.3. Finite thermoelasticity. Let B be composed of a homgeneous

thermoelastic material. Then there exists a Helmholtz free energy potential
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Z+ x JRt+ -+ such that the nominal Helmholtz free energy per unit mass

,the nominal stress tensor S, and the nominal entropy per unit mass are given

in terms of ' as follows:

?k= k(F,0) on M \E,

S = pF(F,9) on M \ E, (2.3.1)

7= on M\E.

It is assumed that is once continuously differentiable and piecewise twice contin-

uously differentiable on + x R+. The nominal heat flux q is, for a thermoelastic

material, given by a heat flux response function 4l : + x R x R 3 __ R 3 so that

q = 4(F, 0, V) on M \ E. (2.3.2)

It is assumed that C1 is piecewise twice continuously differentiable on its domain

of definition.

Observe that a thermoelastic material is defined in a manner such that the

rate of entropy production rloc(-; ') in a region P due to mechanical dissipation

is identically zero on T. Hence, the localization of the imbalance law (2.1.10)

at a point contained in the interior of M \ E yields, with the aid of (2.3.2), the

inequality

4l(.,., d).d > 0 on f+ x R Vd ER 3  (2.3.3)

as a condition necessary for the satisfaction of the second law of thermodynamics.

The response function Cl is assumed to be specified so that (2.3.3) holds; then,

inequality (2.1.11)5 is automatically satisfied and can be ignored in the following.

For remarks regarding the consequences of objectivity on the properties of

the potential 4 and response function Cl, see JIANG [11].

2.4. Constitutive specialization. To facilitate the ensuing analysis sup-

pose, henceforth, that the homogeneous thermoelastic body B is thermomechani-

cally isotropic. Then the Helmholtz free energy potential 4 and heat flux response
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function l can depend on the deformation gradient F only through the deforma-

tion invariants Ik(G) defined in (2.1.5). Assume henceforth that both k and 1

are independent of the second deformation invariant I 2(G). Suppose, moreover,

that the Helmholtz free energy potential b can be represented in terms of three

functions ? :R 4 x JR --, R, R :+ x R+ --+ R and = : R. x _R+ --+ R in the

form

tk(F,0) = O(II(G), 0) + 0i 1 (I(G),0)§(I 3(G),0) + §(1 3(G),0)

V(F, 8) E L+ X R+, (2.4.1)

and that the heat flux response function 4 can be expressed in terms of a function

: 1+ x 14 x JR -- IR via

6(F,Od) = (I1(G),I 3(G),O)d V(F,O,d) E £ x + X R 3 . (2.4.2)

In (2.4.1) and (2.4.2) G is the left Cauchy-Green tensor defined in terms of the de-

formation gradient tensor F by (2.1.4). In accordance with the stipulated smooth-

ness of 4 and 4, the functions 4, and = are taken to be once continuously

differentiable and piecewise twice continuously differentiable on JR4 x R+, while

4 is taken to be continuous and piecewise twice continuously differentiable on

R+ x + x 1.. Assume, in addition, that the functions 4, and comply, for

each 0 in JR+, with the following isochoric restrictions:

(3,) -0,§(1,0)=-- , §j.(1,0)=--1, =(1,0)=- x(1,0)=- . (2.4.3)

In what follows, attention will be restricted to homogeneous isotropic thermoe-

lastic materials wherein the Helmholtz free energy potential 4 obeys (2.4.3). A

particular material of this type was studied by JIANG [11].

The nominal stress response of B is then determined, with the aid of (2.3.1)2

and (2.4.1), by

S = 2p(Xi(II(G),I 3(G),O)F + X2 (Ih(G),I 3(G),O)F - T ) on M \ Z, (2.4.4)
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where the functions Xa : R+ x JRP+ x JR+ --+ R are defined as follows:

Xi(I(G),13 (G),0) = ki(I1,) + ?k I (Ii,0)§(I3,0)

(2.4.5)
X 2(Ii(G), I3(G), 6) = 0j, (Ii, 0)§I3(I3, 0) + g1 5(13, 0)

V(h,,13, 0) E R + x R+ x R+.

Observe that, for an isochoric deformation-where I3 = 1 on M \ E, use of (2.4.3)

in (2.4.5) reduces (2.4.4) to read

S = 2p 'j,(Ii,0) (F - F- T )  on M \ Z. (2.4.6)

Following the work of JIANG & KNOWLES [12] in the purely mechanical set-

ting, it can be readily shown that a special thermoelastic material of the type

characterized by (2.4.1)-(2.4.3) satisfies the Baker-Ericksen inequalities at all ab-

solute temperatures if and only if

?k1(I,0)+?P11 1(I,O)§(I3,O) >0 V(I1,1 3,0) EU x IR +, (2.4.7)

where the set U is given by

U = {(1,,I13)10 <13 < (I,/3)3}.

Choose a rectangular Cartesian frame X = {O;el,e2,e3} and consider the

response of the thermoelastic material at hand to a simple shear deformation y

given as follows

k(x,t) = (1 + -ye3 ®el)x V(x,t) E M, (2.4.8)

where the constant 7-assumed non-negative without loss of generality-denotes

the amount of shear. Note that the foregoing deformation is isochoric. From
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(2.3.1)2, (2.4.1), (2.4.3) and (2.4.6) the nominal shear stress corresponding to the

deformation k is, therefore, for each -y in .R+, found to be

e3 -Sel = 2p7tPI, (3 + 72,) -r(', ). (2.4.9)

where 0 takes on some positive value. The function r II?+ x IR+ --+ _R will

be referred to as the shear stress response function of the special thermoelastic

material at hand in simple shear. An immediate consequence of (2.4.3)1 and

(2.4.9) is that pi can be expressed via

p~( i O Jr(x,O0) dr V(Ii, 0) E [3,00o) x _R+, (2.4.10)

so that the nominal stress response of such a material, in all three dimensional

deformations and absolute temperatures, is completely characterized by specifying

a shear stress response function r along with the functions 4 and g introduced in

(2.4.1). Now, define the secant modulus in shear M + R+ -+ R by

M(y,0) = 2pi,(3+-y2 ,0) V(y,O) E R+ x 1 R. (2.4.11)

Observe that, in compliance with the stipulated smoothness of k, both 7 and M

must be continuous and piecewise continuously differentiable on R+ x 1+. From

(2.2.9) and (2.2.11) that the shear stress response function r must also satisfy

r(0,O) = 0 VO E 1R+, ry(0,0) = M(0,O) V0 E IR+. (2.4.12)

Note, also, that for the simple shear deformation defined via (2.1.1) and (2.4.5),

the Baker-Ericksen inequality (2.4.10) reduces, with the aid of (2.4.11) and

(2.4.3)4, to a relation which involves only M: viz.,

M(, 0) > 0 V(y,0) E +R . (2.4.13)
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Restrict attention in the sequel to these special materials for which the infinites-

imal shear modulus is positive; i.e., require that

M(0,0) >0 V0 IR+. (2.4.14)

Despite the significant restrictions which have been placed upon the class

of materials which will be considered in this investigation, no presuppositions

have been made regarding the sign of the derivative with respect to its first

argument-where it exists-of the shear stress response function corresponding to

the thermoelastic material defined in compliance with (2.4.1)-(2.4.3) and (2.4.10).

JIANG [111 has shown that the monotonicity of r(., 0) is, for fixed 9 in R+, related

directly to the ellipticity of the material which it characterizes. If, in particular,

r(., 0) is not a monotonically increasing function on its domain of definition-for

some range of 0-then the associated material is non-elliptic. With this in mind,

let (0m, 9 M) be contained in R+ and define functions -y : (Om, OM) - JR+ and
*

(0., 9M) -+ R+ such that

,y(0) < (0) VO E (Om,,M). (2.4.15)

Next, define three plane open subsets A,, A2 , and A3 of the shear strain-

temperature quadrant as follows:

A, = {(-y,0)I0 < < -y(),0 E (OM,M)}.

A 2 = {(y,0)[y(O) < - < j(0),0 E (OM,,OM)}, (2.4.16)

A3 = {(-, )I- (0) < y < 0,0 E (0m,OM)}.

This investigation will make use of a particular subclass of non-elliptic thermoe-

lastic materialsof the above special form wherein the relevant shear stress response

function r is taken to be continuous on JR+ x - and continuously differentiable

on Al U A 2 U A 3 and is required to obey the following monotonicity requirements

r.r7 >0 on AUA 3 ,

(2.4.17),r. < 0 on A2.
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Assume, also, that r(-,8) is monotonically increasing on A14 for all 8 in IR+ \

[am, M]. Let the nominal conductivity in shear i : JR x R+ --+ R+ and the nom-

inal specific heat per unit mass in shear Z: R x R+ -- _R+ of the thermoelastic

material at hand be defined as follows

k(7,0) =(3 + 7 2,1,0) V( 7,0) E JX R+,
(2.4.18)

(yG) = -G0 ee(3 +y 2,G) V(yG) E R 1 .

Suppose that k and Z are both continuous on A, UA2 UA3 and piecewise continuous

on R+ x 1R+. In compliance with (2.3.3) let k be positive on its domain of

definition. Suppose, in addition, that Z is positive on its domain of definition.

The sets A, and A3 are referred to as the high and low strain phases of the

thermoelastic material specified by (2.4.1)-(2.4.3) and (2.4.10). These, together

with the set of shear strain-temperature pairs in (R+ x R+) \ (A, U A 2 U A3 )

comprise the elliptic phases of such a material. A thermoelastic material of the

type at hand which is defined so that r, k and 0 have the properties set forth

above will be referred to herein as a three-phase thermoelastic material. See

Figure 1 for a graph of r(-, 9o) for fixed 0 in (Gre, 8M) typical of those which

specify three-phase thermoelastic materials. Consult Figure 2 for a division of

the shear strain-temperature quadrant into regions of monotonicity of 7(., 0) for

fixed 0.

2.5. Completion of constitutive assumptions via the kinetic rela-

tion. Let B be composed of a three-phase thermoelastic material and consider

a motion of 8 which involves a moving surface of discontinuity St in one or all

of the field quantities F(., t), 6(., t), S(., t), 0(., t), i7(, t), and q(., t) at each in-

stant t in T. Assume that St separates high and low strain elliptic phases in the

material at hand. In the context of such a motion it is necessary (see [1-4]) to

supplement, in some fashion, the constitutive information provided in Section 2.4.

An approach to this taken by ABEYARATNE & KNOWLES [1] entails the provision

of a kinetic relation. Two basic cases motivated by [1) can be considered: in the
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first a constitutive response function V :R x (,m, M) -+ JR is specified so that

V.= ( ) V(×,) E Ii? x (0m,GM), (2.5.1)

while, in the second a constitutive response function @ : R x (Gm, M) --+ R is

furnished so that

f = G (V, 0) V(Vn,G) E if? x (0m,GM). (2.5.2)

The functions V and are referred to as kinetic response functions. Since the

three-phase thermoelastic material can lose ellipticity only for absolute tempera-

tures 0 in (0m, aM), the kinetic response functions V and p are defined only on

R x (Gm, aM). Both varieties of kinetic response functions will be considered in

this investigation. If V is such that V(0, )I > 0 for all (4i, 0) in 1x (0m, GM) then

(2.2.6) is automatically satisfied and V is referred to as admissible. If @(V, G)V > 0

for all (V, 0) in R x (9,, GM), 0 is, similarly, referred to as admissible. HJ an ad-

missible kinetic response function V (or 0) is continuous on R x (0m, 9M), then

it must satisfy V(0, 0) = 0 (or (0, 0) = 0) for all 0 in (0m, 8M). If, in addition,

to being admissible, V (or €) is continuously differentiable on BR x (0m, GM), then

V#(0,0) > 0 and Ve(0,0) = 0 (or spv(0,0) > 0 and Oe(0,0) = 0) for all a in

(O, OM)-here ,', and ,v refer to the first partial derivatives of V and 0 with

respect to their first arguments while Ve and be refer to the first partial deriva-

tives of V and ( with respect to their second arguments. Otherwise, adnissiblility

implies nothing with regard to the sign of the derivative of a smooth kinetic re-

sponse function. All kinetic response functions considered herein are assumed to

be admissible. See Figure 3 and Figure 4 for illustrative graphs of V(-, Go) and

O(.,0o) for fixed Go in (Gm,GM).

2.6. Thermoelastic antiplane shear motions of a special thermoe-

lastic material. Suppose, from now on, that I" is a cylindrical region and choose

a rectangular Cartesian frame X = {0; el, e 2, e 3 } so that the unit base vector e3
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is parallel to the generatrix of T . A dynamical process will be referred to as a

thermoelastic antiplane shear normal to the plane spanned by the base vectors el

and e2 if the deformation : is of the form

k(X,t) =X+U(Xl,X2 ,t)e 3 V(x,t) EM, (2.6.1)

and the nominal Helmholtz free energy per unit mass P, nominal entropy per

unit mass q7, nominal absolute temperature 6, and nominal heat flux vector q

are-like the displacement field associated with (2.6.1)-independent of the x 3-

coordinate. The non-trivial component of displacement u in (2.6.1) will be referred

to as the out-of-plane displacement field. Inspection of (2.6.1) reveals that any

discontinuities in the gradient and, perhaps, time derivative of kV must result

from discontinuities in the spatial derivatives out-of-plane displacement field and,

hence, occur across surfaces which do not vary with the X3-coordinate; similarly,

because of their independence of the x3-coordinate, any discontinuities in 0, 77 or

q must occur across surfaces which do not vary with the x3-coordinate. Let St

denote a surface across which at least one of the above field quantities jumps at

the instant t in T and let Z be defined as in (2.1.2).

Following the work of JIANG [11] in the inertia-free context, it is possible

to demonstrate that, although not every homogeneous and isotropic thermoelas-

tic material can sustain thermoelastic antiplane shear motions, all thermoelastic

materials defined in compliance with (2.4.1)-(2.4.3) and (2.4.10) are capable of

doing so. It is easily shown that for such materials the local balance equations

(2.1.11)2,3,4,5 reduce, in the absence of body forces and heat supplies, to

(M(7 ,6)ucx),,= pu on X \ F,
(2.6.2)

(k(, 0)0,, ),, +Me(, 9)9u,, = p6(-y, 0)6 on X \ r,

where X is given by V x T, V is a generic cross section of 7, and 1' =

{(Ix 2,t)l(Xz,x 2 ) E Ct,t E Tl with Ct= vnfs at each t in T. See FOSDICK&
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SERRIN [8] and FOSDICK & KAO [7] for a general discussion of the circumstances

under which the local balance equations (2.1.11)2,3 reduce to a single scalar equa-

tion. In (2.4.2) M is the secant modulus in shear as defined in (2.4.11) and

- : X \ ' --+ R is the shear strain field given by

-Y(Xl,X 2 ,t) = VU,0 (I, X2 ,t)U,a(Xi,X 2 ,t) V(Xl,X 2 ,t) E X \ 1. (2.6.3)

The jump conditions (2.1.13)2,3 reduce, for a thermoelastic material of the

type at hand subjected to antiplane shear, to

[M(-y,8)u,flcj+pV.[uj]=0 on r,
(2.6.4)

[k(-y,o)o, n,]+pV1o[i7J-J fV.=0 on r,

where -- {(x,t)Ix E Ct,t E T}, n(-,t) : Ct -- J is a unit normal to Ct, the

nominal entropy per unit mass 7 : X \rF - 1 is given, from (2.3.1)3, (2.4.1) and

(2.4.3), by

1y

-,(3 + 2,0) = I Jre (,9)d on X \ r, (2.6.5)
0

and f : F --+ R is the driving traction introduced in Section 2.3. The kinematic

jump condition (2.1.16) becomes

[u]=0 on F, [1=0 on r. (2.6.6)

It is also readily shown that the driving traction f for a thermoelastic material

defined via (2.4.1)-(2.4.3) and (2.4.10) subjected to an antiplane shear deforma-

tion involving a discontinuity in the gradient of the out-of-plane displacement

across a moving curve Ct is given by

,+
=- JT(K,,)d, - ((M(r,9)u,,,))[u, 0,] on F. (2.6.7)
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Recall that the jump condition (2.1.13)4, or, equivalently, (2.2.7) is satisfied con-

stitutively by requiring that the kinetic response function be admissible.

With reference to (2.1.14), (2.1.15) and (2.2.6) it is easily demonstrated that,

in the absence of inertial effects, (2.4.2) is replaced by

(M(-y,,8)u, ,),, - 0 on X \ F, (2.6.8)

while (2.4.4) becomes

[M(y,O)u,, n.] = 0 on F, (2.6.9)

and (2.6.7) reduces to

f on r. (2.6.10)

Observe that, within the context of a thermoelastic antiplane shear defor-

mation of the type described above, no generality is lost by focussing exclusively

upon the motion on a cross-section V of the cylinder IZ and the dynamics of the

curve Ct = v l St. In the following, curves Ct across which the gradient of the

out-of-plane displacement field u(., ., t) and, perhaps, the out-of-plane velocity

field t!(., ., t), the entropy field q(., -, t), and the gradient of the absolute temper-

ature field 0(., ., t) jumps, at some instant t in T, and which segregate the high

and low strain phases of the material at hand will, therefore, be referred to as

phase boundaries.
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3. LINEAR STABILITY OF A PROCESS INVOLVING A STEADILY

MOVING PLANAR PHASE BOUNDARY IN A THREE-PHASE

THERMOELASTIC MATERIAL

3.1. Description of the base process. Suppose that 8 is composed of

a three-phase thermoelastic material and that the cylinder 1Z degenerates so as

to occupy all of VR. Let the rectangular Cartesian frame X be as in Section 2.4.

Consider a thermoelastic antiplane shear motion on the time interval (-oo,0)

with an out-of-plane displacement field uo(., t) : R --+ R given by

u0(x 1,t) = {Ylx1 + vit if xi < vot,
l.YrXl + Vrt if xi > vot,

for each t in (-oo, 0), and an absolute temperature field 00 which is constant on

1Z x (-oo, 0) and satisfies

6o E (0m,M), (3.1.2)

where the shear strain-temperature pairs (li, 0o) and (yr, 00) satisfy one of the

following

((71,00),(7r,0o)) E A3 x A1, (('1,00),(7r,0o)) E A1 x A3. (3.1.3)

Observe that the process described by (3.1.1)-(3.1.3) is isothermal.

Since one of (3.1.3) must hold, there is no loss in generality incurred by

assuming that the base interface normal velocity v0 is non-negative; that is,

vO > 0. (3.1.4)

It is clear that u0 and 0 satisfy the differential equations in (2.6.2) on the

set (VR2 x (-oo,0)) \ Io with F0 given by {(Xl,X 2 ,t)l(xI,x 2 ) E At,t E (-oo,0)}

and At = {(XI,x 2 )1x = Vt, X2 E R} for each t in (-oo,0). The moving line At

is, for each t in (-oo, o), a phase boundary.
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Assume, in order to comply with the jump conditions in (2.6.4) and (2.6.6)

on T o, that the constants 7, -Jr, v1, vr, and vo associated with (3.1.1)-(3.1.3) are

restricted to satisfy the following equations:

Vr - v1 + vo(7'r - 71) = 0,

T(7r,O) - T(71,Oo) + PVo(Vr - V) = 0, (3.1.5)

vo(fo + POo(r - 7/)) = 0.

In (3.1.5) the base driving traction fo is given, with the aid of (2.6.7), by

'Yr

fo= JT(7,o)d- ((-(!r,(O)+ (7, 00))(7r -7), (3.1.6)
-ft

and the constants r and 71 are given in terms of 7,-, 71 and 0 via the shear stress

response function r as follows

,f ,(,,Oo)dr., qt ,(,,Oo)d,. (3.1.7)

P P
0 0

Observe, as a consequence of (3.1.2) and (2.2.7), that fo must satisfy

fo > 0. (3.1.8)

Assume that v0 complies with the inequality

vo <m mn { V/'(f'9 o)/P, v'7,(-reo7})/ , (3.1.9)

so that the normal velocity of the phase boundary in the base process is locally

subsonic. It is then permissible2 to impose a kinetic relation in the form (2.3.8)

2 See ABEYARATNE & KKNOWLES [2].
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or (2.3.9) on ro and require that the parameters yl, t, V, v, and vo satisfy one

of

v0 = V(, 00), fo = O0(voO), (3.1.10)

depending, respectively, upon whether a kinetic relation is provided in the form

(2.5.1) or (2.5.2).

In a coordinate frame moving with the phase boundary, the base process

described involves a piecewise homogeneous shear strain field and a homogeneous

temperature field. If (-fl, 0o) and (7r, Go) are consistent with (3.1.3)1 then the base

process is one wherein the high strain elliptic phase of the material at hand grows

at the expense of the low strain elliptic phase at constant temperature; whereas, if

(-ye, 0o) and (y,, 0o) comply with (3.1.3)2 then the base process is such that the low

strain elliptic phase of the material at hand grows at the expense of the high strain

elliptic phase at constant temperature. In either case the discontinuity involved

is, for the duration of the motion, a normal phase boundary-that is, the angle

between the limiting values of the gradient of the out-of-plane displacement field

on either side of the phase boundary is zero at every point of the phase boundary

over the time interval (-oo, 0).

The constant latent heat of transformation-f o-associated with the ther-

moelastic process described by (3.1.1)-(3.1.3) is defined by

-tr

to = P~o(it - 7,) - fo =o J ro(c, Oo)dc - fo. (3.1.11)

From (3.1.5)3 it is clear that to must be zero if vo = 0-which agrees with the

intuitive notion that the heat given off in the process of transformation must

be zero in the absence of heat flux. Recall from Section 2.5 that, under the

present assumption that the kinetic response function V or which is provided

is continuous, VO = 0 if and only if fo = 0. Hence, when vo = 0, the latent heat
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of transformation simplifies to

= pOO(}L - 7,.) = 80 re(,O)dr. (3.1.12)l0I

Observe, however, that (3.1.5)3 is satisfied for any real value of to when vo = 0.

Suppose, in addition to all the above, that the kinetic response function f7

or is chosen so that its derivative is non-zero at the base driving traction Jo,

that is, assume that one of the following, as is appropriate to the specification of

a kinetic relation in the form of either (2.5.1) or (2.5.2), must hold:

Vo(j1,6 0  , Ov(V0,00)#0, (3.1.13)

This assumption is made in order to preclude the necessity of going to higher

order in the context of the forthcoming linear stability analysis. See Figure 3 and

Figure 4 for schematic graphs of smooth admissible kinetic response functions

o(.,Oo) and 0(.,9o) which satisfy (3.1.13).

When inertial effects are ignored it is clear that u0 as defined in (3.1.1) also

satisfies the field equation in (2.6.9) on (? 2 x (-oo,0)) \ ro. Equations (3.1.5)1,3

are, in this context, still sufficient to satisfy (2.6.8) and (2.6.2)2 on ro. In place

of (3.1.5)2, the constants 7j, 7r, v, vsr, and v0 must, however, satisfy

r(7t,,0) - r(71, 0) = 0, (3.1.14)

in order for the jump condition in (2.6.9) to hold on F0 . Although the expression

for the base driving traction fo given in (3.1.6) remains valid in the inertia-free

setting, (3.1.14) can in this case be used so that it simplifies to read

fo = -y(7,eo)d7 - r.(7,, -71), (3.1.15)
7ye
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where r. = r(-yi, 0o) = r(Ir, Oo).

Given a shear stress response function r which describes a particular three-

phase thermoelastic material and an arbitrary kinetic response function IV or

V which describes the dynamics of phase boundaries which may occur therein,

there may not, in general, exist constants 7y, y,, vi, vr, and v0 which satisfy one of

(3.1.3), or (3.1.3)2 and are consistent with the restrictions embodied by (3.1.5),

(3.1.9), (3.1.10), or (3.1.10)2, and (3.1.13), or (3.1.13)2, or, in the inertia-free

case, (3.1.5)1, (3.1.13), or (3.1.13)2, (3.1.9), (3.1.10)1 or (3.1.10)2, (3.1.14) and

(3.1.15). Within the context of this investigation it will be assumed, however,

that f7 or 3 is chosen so that a non-trivial base process exists.

3.2. Perturbation of the base process. Suppose that at the instant t = 0

the out-of-plane displacement and velocity fields, the absolute temperature field

and the configuration of the phase boundary associated with the thermoelastic

process specified in Section 3.1 are subjected to a perturbation. Let this perturba-

tion be such that the phase boundary can be, at t = 0+, described by the graph

Co of a continuous function h : R --+ f? of the x2-coordinate, and segregates

elliptic phases of the three-phase material at hand in a sense consistent with that

which was present for t in (-oo, 0). Let the out-of-plane displacement field, out-

of-plane velocity field, and absolute temperature field linked to this perturbation

be given, respectively, by a once continuously differentiable function r/: JR2 ,

a continuous function w :R 2 --+ ?, and a continuous function 0 : R 2 .. , JR.

Assume that h, ri, w and 4 represent small deviations, in some appropriate sense,

from their counterparts in the base process. In particular, suppose that h, 77,

q,,, w, and 4 are all square integrable on their domains of definition. Require,

furthermore, that the components of the gradient of rj allow the satisfaction of

the decay condition

+im 17,. (XI, X2)7,a (XI, X 2 ) = 0, (3.2.1)
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while w and 4 comply with the following decay conditions

lim W(X1,x2) = 0, lim 0(T1,X2) = 0, (3.2.2)

so that the disturbance is localized in a neighborhood of the phase boundary

associated with the base state at t = 0.

The perturbation at t = 0 will initiate a new process involving an out-of-

plane displacement field u : R2 x + - R and an absolute temperature field

0 : f2 x R+ -* R which are, in general, weak solutions of the field equations

(2.6.2) and satisfy the jump conditions in (2.6.4) and (2.6.6) at all discontinuities

in their gradients, the kinetic relation (2.5.1) or (2.5.2) at all phase boundaries,

and the initial conditions

u(., ., 0+)=u0(-,0+)+ 7on R2

i(-, 0+) = to(, 0+) + w on R
2 , (3.2.3)

on JR2

Since the perturbation is small, assume that, the subsequent process involves

only a single phase boundary Ct = {(X1, X2 , t)I X1 = (X 2 , t), X 2 E R} for each t in

JR+, with , : R x R+ -. JR continuously differentiable on its domain of definition

and defined so that it is in accord with the initial condition

; (,0+)=h on R. (3.2.4)

With the intent of linearizing the field equations in (2.6.2) about the base process,

write, for each t in JR+,

u(x,X 2 ,t)=UO(xI,t)+w(x1,x 2 ,t) V(x,x 2 ) E V \ Ct,
(3.2.5)

O(x,X 2,t)= 90 + T(xi,x 2,t) V(xI,x 2) E E) \ C¢,
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where w and its derivatives and T are assumed to represent small departures from

the relevent quantities in the base process. Assume that the components of the

gradient of w satisfy the following limits

lir W,1(I,,-,.)= on jRx)r+,
Z - ± 0 0 ( 3 .2 .6 )

lir w, 2 (',X 2 ,*)=O on lRxJR+,
Z2 - oo

and also that T complies with the limit

lira T(xi,X 2,-)=0 on F,+. (3.2.7)
+Z2 -2*00

From (3.2.3) and (3.2.5) it is clear, moreover, that-when inertial effects are not

ignored-the increment w to the out-of-plane displacement field must satisfy the

following initial conditions:

wo(., ., 0+) = Y on R2,
(3.2.8)

b(-.,*0+)'=W on R 2 .

It is important to emphasize that these can not be imposed in the inertia-free

setting.

Also, the increment T to the absolute temperature field must satisfy the

following initial condition

T(., -, 0+) on R 2 .  (3.2.9)

Next, define s : JR x IR -- IR, the correction to the interface position due

to the perturbation, via

(-.,t)=vot+s(.,t) on JR VtER+. (3.2.10)
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Note, from (3.2.4) that the increment 9 to the phase boundary position must

satisfy the initial condition

s(.,0+) =h on JR. (3.2.11)

Observe that the unit normal vectors n*(., t) : R -+ N to Ct are given by

n±(',t) - - e l - s,2 (.,t)e2  o Vt E R+. (3.2.12)2 (., t

For the remainder of this work, choose the unit normal vector associated with the

plus sign in (3.2.12) and drop this sign when referring to it. The normal velocity

Vn(.,t) : _R -+ R of Ct is, thus, given, for each t in JR.+, by

D..0v 0 + A.t
V - (.,t)- on R Vt E JR-. (3.2.13)V/1 + MR., t

3.3. Linearization of the field equations associated with the process

initiated by the perturbation. Let V1 and 'D denote, for each t in JR+, plane

sets defined as shown below:

= -- {(xl,x2)1xl X_ -(X2,t)}, tr = J 2 \At. (3.3.1)

Let X1 and X,- be given, in turn, by

X1- ={(X1,X2,t)j(X1,X2) E Dt',t E DR+ }, (3.3.2)

and

Xr = {(l,x2 , t)l(xI,z 2 ) E Vr,t E fR+}. (3.3.3)

The displacement equations of motion which hold on k1 and kr can be obtained

following FRIED [9] and are given, in turn, by

a W11 +b2 W,2 2 = 6

(3.3.4)
2 2arW,II +brw,2 2 =
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where the positive constants at, b, and at, b, are defined as follows:

al = (7&1,00)/P, bt = ,/M(j,00)/p(3, (3.3.5)

a,. = /T.(7.,00)/P, br = /M( o7',00)/p.

In writing (3.3.5), the positivity of r-y(yi,Oo) and ry(Tfr,Oo)-which are results

of whichever of (3.1.3)1,2 is appropriate, and of M(-y, 8o) and M(Yr, 0)-which

follow from (2.4.13), have been used.

The energy equations which hold on fl and kr can be obtained by linearizing

the partial differential equation (2.6.2)2 about (71, Oo) and (7r, 9o), respectively.

Turn, now, to the derivation of the linearized energy equation which holds on X1.

It is easy to show, following [9], that

7 71 + w,j on k1. (3.3.6).

With the aid of (3.2.5)2 and Taylor's theorem the relation (3.3.6) leads to the

following expansions:

Ic(7,o) - k:(,o) + k,(7 ,o)w,i +Ice( 7 ,o)T on ,

'(7,0) Z(T-,o) + r(7,Oo)w,i +4(TOo)T on , 1, (3.3.7)

Mg(7,0) - Ms( 1 ,Oo) + M.yo(T, Oo)w,i +Mgo(ty,Oo)T on X.

Next, using (3.2.5) and (3.3.7)1,2 in the left hand side of the partial differential

equation in (2.6.2)2 gives

(k(7,oG)o, 0 ),or + M.(7y,OG)GO,ai, -

k(- 1, 0 )T,aa +oTG(T7, 0o)tb,j on ,, (3.3.8)

while using (3.2.5) and (3.2.7)3 in the right-hand-side of the same equation gives

0
pZ(y, 0)0 21 p2(-fl,,Go)T on X1.(3.)
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The linearized energy equation which holds on X is, thus, from (3.2.5), (3.3.8)

and (3.3.9), given by

aIT,Oa = T + flob,y, (3.3.10)

where the positive constant al and the real constant f3 are defined by

kc( 71, 0) Oore(7l, 0o)
ee = pk(y,6o)' 8i- p3(TY:,0) (3.3.11)

Similarly, the linearized energy equation which holds on X'. is

a,.T,Oa = t + rtb1,i (3.3.12)

where the positive constant a,. and the real constant /f, are defined by

&Qy,., eo)o6re(-y,, 0o)
=p=k(y,, 00) P3, = To('Yr, 00 (3.3.13)a,=PZ( Yr, 0o0)' Pa( tr, 00)

From (2.6.9) it is clear that, in the inertia-free setting, the displacement

equations of motion (3.3.4) are supplanted by

2 2

arli +brw, 2 2 = 07

which hold, repectively, on XI and X,.

3.4. Linearization of the jump conditions and kinetic relation as-

sociated with the process initiated by the perturbation. Since the set

r = {(zIX 2,t)I (XI,z 2 ) E Ct,t E IR+1 represents the post-disturbance trajec-

tory of the phase boundary, the jump conditions in (2.6.4) and (2.6.6) and the

kinetic relation in (2.5.1) or (2.5.2)-with V. and f given, respectively, by (3.2.13)

and (2.6.7)-must hold on it. Assume, henceforth, that the function s introduced

via (3.2.10) and its derivatives are small in the same sense that w and T are small.
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Note, first, that this assumption implies, using (3.2.12) and (3.2.13), the following

approximations for n and V on 1:

n2el-s, 2 e2  on 1,
(3.4.1)

VG-vo+A on r.

It is easy to show, following FRIED [91, that the linearized form of the jump

condition (2.6.4)1 is as follows

(a - v0o)w,1 (vot+,x2,t) - (a - vo)W,1 (Vot-, x 2 , t)
(3.4.2)

- 2vo(,y,-- 71)h(X2,t) V(X2 ,t) EJR XR+,

while that of (2.6.6), is

W(vot+,X2,t) - W(vot-,X2,t) = (y' -7r)S(X 2 ,t) V(X 2 ,t) El R f x +. (3.4.3)

Linearization of the jump condition (2.6.6)2 gives, next, since no heat flux is

present in the base process (3.1.1)-(3.1.3),

T(vot+,z 2,t)- T(vot-,x 2,t) =0 V(X2,t) E lix 1+, (3.4.4)

so that the increment T to the absolute temperature field is continuous across the

phase boundary in the post perturbation process.

The driving traction f can be linearized in a manner analagous to that dis-

played in [91 to give, with the aid of (3.4.4),

f(z 2 ,t) r fo + 0p(-i- 7r)((a - Vo)Wi (vot+,X2 ,t) + (at - vO)w,1 (vot-,X2,t))

+ (P(77 -7 7r) + l(Yl - -yr)(T0(-yr, 00) + re(-yi, Go))) T(vot, X2, t)

V(X 2 ,t) E ? x .R+, (3.4.5)

where the base driving traction fo is given by (3.1.6).
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Turn, now, to the linearization of the energy jump condition (2.6.4)2. From

(3.3.7)1, (3.4.1), and (3.2.5)2 it is clear that the first term on the left-hand-side

of the energy balance jump condition (2.6.4)2 linearizes as follows:

[k(-r(( X2 , t), X2, t),O(((X2 , t), X2, t))O,, ((X 2 , t), X2, t)n,(X 2 , t)]

k(-y,, Oo)T,i (Vot+, X2 , t) - k(y Oo)T,l (Vot-, z 2 , t)

V(X2,t) E R x R+. (3.4.6)

Furthermore, (2.6.5), (2.6.6)2, (3.4.1), (3.4.4) and (3.4.5) yield the following lin-

earization of the remaining two terms on the left-hand-side of the energy balance

jump condition (2.6.4)2:

(pG(((X2, t),X2, t)[r(C(X2, t), X2, t)] + f(X2, t))V,(X2, t)

-pvo(Z(7r, Oo) - Z(y, oo))T(vot, x2 , t)

1vo(-t - 7r)(ro(Tr, Oo)+ Gr(yI,Oo)))T(vot, X2 ,t)

+ pvo(fl - -Yr)((ar - vo)W,1 (vot+,X2,t) + (al - v0)w, 1 (vot-,X2,t))

- VoOo(To(7r, Oo)w,l (vot+, X2, t) - TO(j, Oo)wl (vot-, X2, t))

- 10h(X 2 , t) V(x 2 ,t) E JR x R+.. (3.4.7)

Together, (3.4.6) and (3.4.7) give the following expression for the linearization of

the energy jump condition (2.6.4)2:

0 =k(tr, Go)Tl (Vot+, X2 , t) - k(-y, Oo)T,l (Vot-, X2, t)

+ pvo( ( yr, So) - (yi,Oo))T(ot, X2 , t)

+ 2VO(t1 - 7-r)(TO(Yr, 0o) + Tre(T, Oo)))T(vot, X2, t)

+ -pPVo("yl - -Yr)((ar - vo)W, (VOt+, X 2 , t) + (a -0 0)w, 1 (VOt-, x 2 , t))

- VoOo(7e(f,., Oo)w,I (Vot+,x 2 , t)- T'(7,, Oo)W, (Vot-, x 2 , t))

- 0h(X 2 , t) V(x 2, t) E R x JR+. (3.4.8)
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Linearization of the kinetic relation and use of whichever of (3.1.10) is ap-

propriate in a manner completely analogous to that performed in [9] gives, with

the aid of (3.4.4),

h(x2, t) = 2 v. ((a2 " -°)w' (Vot+,x2,t) + (al - 0o)w,i (vot-,X2 ,t))

+ 71 ^- 'r 8o (') + Y,Oo)))T(vot, z 2 ,t)
2pv.

* (vo + 7;'Lo)T(vot, X2, t) V(Xz, t) E B? x R+, (3.4.9)

where the constants v. and v are defined by either

V, = ('O = Ve( ,6o), (3.4.10)

if the kinetic relation is furnished in the form (2.5.1), or

Go~v(vo, Oo) _ @(vo,Oo) (..1
V. = Oo V , vo = 3(o 0 (3.4.11)

P Wv(vo, Oo)'

if the kinetic relation is supplied in the form (2.5.2). Note, from (3.1.13), that v.

is a real-but nonzero-constant, while v,& is a real-and possibly zero-constant.

By virtue of the foregoing calculations it is crucial to note that, within the

scope of the linearization, it is legitimate to enforce the partial differential equa-

tions in (3.3.4), and (3.3.10) on the interiors of the set 01 defined by

.I = {(XI,X 2 ,t)l(X1,X 2) E /Ut E lR+}, (3.4.12)

with Ut = {(X1,X2)XI <_ Vt, X2 E R} for each t in 1R+, instead of the set X,,

and the partial differential equations in (3.3.4)2 and (3.3.12) on the interior of the

set 12,. defined by

Dr = {(xI,X 2,t)l (XI,X 2) E /r,t E .R+}, (3.4.13)
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with lI" = {(Xl,X2)1zl Vt, X2 E R} for each t in 1+, instead of the set Xr.

For the purposes of the forthcoming analysis it is useful to define a set I as follows:

I = {(XI,X 2 ,t)l XI = vt, X2 E It E J+}. (3.4.14)

In the inertia-free case it is readily shown that, while (3.4.3) and (3.4.4)

continue to hold, (3.4.2) is replaced by

i (vot+,x 2 ,t) aw,1 (vot-,X2 ,t) = 0 V(X2 ,t) E R x R+, (3.4.15)

(3.4.8) reduces to

0 =k(Yr, Oo)T,l (Vot+, X2 , t) - k(-y, Oo)T,l (vot-, X2, t)

+ Pvo(7Wr, o) - Z(ti, 6))T(vot, X2 ,t)

+ 'vo(Tl- 7r)(T'(7r ,o) + rT(7,Oo)))T(vot, X2 ,t)

+ pvo(T - 7r)(arwi (vot+,X2 ,t) + alw,1 (vot-,X2,t))

- VOOO(To(7r, O)wi (vot+,X2 ,t) - T(T, OO)W,1 (vot-,X2,t))

- 1o (X2, t) V(X2, t) E R x R+, (3.4.16)

and (3.4.9) simplifies to read

A(x2,t) v.l -(arw, (vot+,X 2 ,t) + atw, 1 (vot-,x 2 ,t))

+ ^/I ----- (78(efr, Go) + i'e(-i, Oo)))T(vot, X2 ,t)2pv.

+(ve + "f- )T(vot, X2 ,t) V(X 2 ,t) E R x R+. (3.4.17)

Finally, remarks analogous to those made regarding the enforcement of the partial

differential equations in (3.3.4)1 and (3.3.4)2 on 15 and 2,. apply also to those in

(3.3.14)1 and (3.3.14)2.
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3.5. Specialization of the base process and the associated linearized

description of the post perturbation process. Suppose, henceforth, that the

base process described in Section 3.1 is restricted so that

To (-Yl,o) = -0(-r, 00) - 0; (3.5.1)

it is implicitly assumed that the shear stress response function T allows for the

possibility of (3.5.1). Observe that (3.5.1) requires that the coefficients of ther-

moelastic coupling in the low and high strain phases of the material at hand are,

by (3.3.11)2 and (3.3.13)2, both identically zero. Although this assumption is

made in order to simplify the forthcoming analysis, it is not inconsistent with

the isochoric nature of the deformation under consideration. The linearized field

equations, jump conditions, kinetic relation, initial conditions (where appropri-

ate), and far field decay conditions satisfied by the increments w, T and s to

the out-of-plane displacement field, absolute temperature field and the interface

position are now listed in both the inertial and inertia-free cases.

In the inertial case, (3.3.4), (3.3.10) and (3.3.12) give the following linearized

field equations
aw,11 +b w, 22 = on b,

a2W, 1 1 +brW 2 2 = on r,

= Ton 51(3.5.2)

arTa=T on b.

In addition, from (3.4.2), (3.4.8), (3.4.3) and (3.4.4) the following jump conditions

hold

[(a 2 - v0)w,l j = 2vo(-r - -11) on I,

[kTi I + pvo[c]T = pvo(-r - 71)(((a 2 - vo)w,x)) + eoS on I,
(3.5.3)

[w]=(7-7,)s on I,

[01=0 on I,
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where the constants a' and a 2 are given by

2=a 2r a 2 = a1, (3.5.4)

and k+ =kr, k-.. ki, C+ = Cr, and c-. = ci are defined via

k+ = k(-fr, Oo), k-.. = k(-y1, o),
(3.5-5)

C+= Z('Y,Oo0), C- = Z(71, 00).

Next, from (3.4.9) and (3.5.1) the following linearized kinetic relation holds:

A = 1 - 7Yr (((a 2 _ V02)W'I)) + (v', + 10 )T on 1. (3.5.6)

Observe that, despite the restrictions imposed on the coefficients of thermoelastic

coupling by (3.5.1), the corrections to the out-of-plane displacement and absolute

temperature fields reamain coupled through (3.5.3)2 and (3.5-6).

The initial conditions satisfied by w and s are, from (3.2.8), (3.2.9) and

(3.2.11),

w(- 0) =tjon R',

0+)= Won pR2

(3.5.7)
T(.,0+)= 0on JR2 ,

s(. 0) hon JR.

Finally, from (3.2.6) and (3.2.7), it is assumed that, for each t in 1R+, the following

far field decay conditions hold

lim w, 1 ( 1 .. t) =0 on ff?,

lim W12 (., X2 ,it) = 0 on R,(3.5.8)

lim T(x 1,X 2 , t) =O0
1 2+Z2_±0OO
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In the inertia-free case, (3.5.2)1,2 are replaced by

a w,l1+b1w,2 2 =0 on
(3.5.9)

aw,11 +b2w, 2 2 = 0 on r.(

Furthermore, the jump condition (3.5.3)1 is, by virtue of (3.4.15), replaced by

[a2 w,, I = 0 on I, (3.5.10)

and (3.5.3)2 is, from (3.4.16) and (3.5.1), supplanted by

[kT,I I + pvo[c]T = pVo(Yr - 71)((a 2w,) )) + on I. (3.5.11)

while (3.5.3)3,4 continue to hold. Finally, the linearized kinetic relation (3.5.6) is,

upon referring to (3.4.17) and (3.5.1), superceded by

S71 - 7^r ((a2 w,)) + (vo + -' )T on I. (3.5.12)
V* .pv. 0

In the absence of inertial effects initial conditions cannot be given for the incre-

ments to the out-of-plane displacement and velocity fields w and tb; the initial

condition (3.5.7)3,4 pertaining to T and s still, however, continue to be applicable.

The decay conditions (3.5.8) also still hold.

3.6. Normal mode analysis for a base process involving a static

interface in the absence of inertia. Suppose that vo in (3.1.1) is zero. Then

the base process described by (3.1.1)-(3.1.3) is a piecewise homogeneous isother-

mal two-phase state involving a static planar interface. Recall, from Section 2.5,

that when v0 = 0 and the kinetic response function V or 0 is continuously dif-

ferentiable on its domain of definition then v. > 0. Since v. = 0 is ruled out by

whichever of (3.1.13) is appropriate and the corresponding expression (3.4.10),

or (3.4.11)I, it is clear that-in the present context-v. > 0. Consider, now, the
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initial boundary value problem composed by (3.5.9), (3.5.2)3,4, (3.5.10), (3.5.11),

(3.5.3)3,4, (3.5.12), (3.5.7)3,4 and (3.5.8). Note, since vo = 0, that (3.5.11) and

(3.5.12) reduce with the aid of (3.1.12) to

[kr,1 = pO(,- q,?)i on I,
71 ^r 2 91 - 1?r(361)

s= /- r((a2w,i )) + 1 T- ?rT  on i.

Observe that, by virtue of the linearization, the relevant partial differential equa-

tions, jump conditions and kinetic relation are all linear with constant coefficients;

note, also, that the domains/70 and /00 are rectangular. It is therefore possible

to find a solution to the linearized partial differential equations, jump conditions

and kinetic relation in the form

{ We+4fzlei#z2ePt V(XI,X 2 ,t) E 0 x I?+,
W~e-"le e'' V(X1, 2, t) E 17 x R+,

T(xIx 2 ,t) = {6ie+CaIei"XzePt V(x,x 2 ,t) E/ fl0 x R+, (3.6.2)
eT(-Xl, X2,t)'X2t)E O~e-r~lee p t V(xi,x2,t) E/ ×l J+,

s(X2 , t) = Seirz2ept V(X2 ,t) E R x R+,

where the amplitudesW, W , i, ,r and S, wave-numbers i, C, (1, Cr and r, and

growth-rate p are all constants. To comply with the decay conditions (3.5.8)1,3 it

is clear that R( I), R(G), R(Ci) and R(C.) must all be positive. Although (3.6.2)

is not, in general, consistent with neither the initial conditions (3.5.7)3,4 which

hold in the absence of inertial effects nor the decay conditions (3.5.8)2,3, since 0

and h are stipulated to be square integrable on R, and hence can be represented

as Fourier integrals-

+00

O(XIX2) = f 4(l', )e " 2 dK V(XI,X 2 ) E R 2 ,

+00 
(3.6.3)

h(X2 ) = I J (,v)e " 2 dr VX2  R ,
-00
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it is reasonable to expect that stability results can be obtained by a normal-mode

analysis; such an analysis entails substitution of (3.6.2) into (3.5.9), (3.5.2)3,4,

(3.5.10), (3.5.11), (3.5.3)3,4 and (3.5.12) to determine the growth-rate p as a

function of the complex wave-numbers , c,, , and the real wave-number 1C.

If there exists a complex growth-rate p with positive real part which arises as a

solution to the aforementioned problem then the base process will be referred to

as linearly unstable. Otherwise, the base process will be called linearly stable.

Observe that the amplitudes e, 9,. and S and wave-numbers (1, C, and

K must be viewed as given for the normal mode analysis to prove effective in

determining necessary and sufficient conditions, via the analysis of a dispersion

relation like that performed in [91, for the linear instability of the base process with

respect to arbitrary disturbances contained in the class of perturbations described

in Section 3.2. Before proceeding, note, from (3.5.3)4, that e, = e, =: e. Now,

substitution of (3.6.2) into (3.5.9), (3.5.2)3,4, (3.5.10), (3.5.11), (3.5.3)3,4 and

(3.5.12) yields the following relations

w, = b 211C S' Wr = a r/ S, e pGo(icp)
ab~ - -y.) a,.br(-- 7) 7/ - 7r

l,= b, b,l, 1 ,(= l+p1< , C,-=V10+p/ar, (3.6.4)

p + (V2111I +pGo(,,p)) = 0,

where Go : R x C --+ Cis given by

Go(x,p) = 80071t- 17r ) 2 V(,c,p) E JRx (, (3.6.5)C,.,/r,7,, +alp + C" V/a2 .'r + arp

and the constant v2 is defined as follows:

V2 = abiarb,.(y1 - 7Yr)2 (3.6.6)
albi + arb,

It is clear from (3.6.4)3,6,7 that, for (3.6.2) to represent a solution to (3.5.9),

(3.5.2)3,4, (3.5.10), (3.5.11), (3.5.3)3,4 and (3.5.12), the amplitude 9 and the
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wave-numbers (I and C,, cannot be chosen independently of S and e. Hence, the

normal mode analysis is only of use in analyzing the linear stability of the base

process at hand with respect to a certain class of perturbations; that is, it is only

possible-via this analysis-to determine conditions necessary and sufficient for

the instability of the base process with respect to a proper subset of the class

of perturbations introduced in Section 3.2. To achieve such results it suffices to

analyze the zero structure of the dispersion relation (3.6.4)8 as a function of the

growth-rate p for fixed values of the wave-number K and the parameters y1, -t,

uO, 00, at, a., b1, 13. al, ar, cl, Cr, p and v.. This is done below.

To comply with the restriction that R(CI) and R(C,) are both positive, the

square roots which appear in the definition of Go are defined so that for p in Rn,

2 + 2 l > V= /a2 2 + a lp > O V ,
at KC + ip >O 2+l> 0 VicEIR (3.6.7)

aric + aerp /a-22+rp>0 VIEJ,

from which it is clear that for p in 0,

R(01 2 + alp)> 0 R ( 04 + alp) >0 VYcEM,
\ -- / (3.6.8)

Furthermore, it is evident from (3.6.8) that

R(p) > 0 R (Go(r,p)) > 0 Vrc E R. (3.6.9)

This result shows that there cannot exist a root p in (V with R(p) > 0 to (3.6.4)8

unless v. < 0. Since v. > 0 it is clear that, at present, there cannot exist a p in (0

to (3.6.4)s with R(p) > 0 for any K in R \ {0}. Hence, when vo = 0 and inertial

effects are disregarded the base process described in Section 3.1 is linearly stable

with respect to all perturbations within the narrowed set under consideration.

If, in place of the foregoing normal mode analysis, a full-fledged Fourier-

Laplace transform analysis of (3.5.9), (3.5.2)3,4, (3.5.10), (3.5.11), (3.5.3)3,4 and
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(3.5.12) is performed, then the narrowing of the class of initial data necessitated by

the normal mode analysis does not occur. Furthermore, in this case it transpires

that the Fourier-Laplace transform of s can be expressed in the form

hi)+ 21" ~cp)

S(KIp) = ) + F ) V(K,p) E R x C, (3.6.10)
p + ' F(., p)

where h is the Fourier transform of h and, for each (x,p) in JR x 0, H(Kc,p) is

a functional of the initial data il, w and 0. From the foregoing discussion it

is apparent that, since v. > 0 at present, there exist no unstable zeros of the

denominator of the expression on the right-hand-side of (3.6.10). Hence, when

the base process is one wherein the associated phase boundary is static prior to

the instant at which the perturbation is imposed and inertial effects are ignored,

it is linearly stable with respect to all perturbations within the class introduced

in Section 3.2.

3.7. Energy analysis for a base process involving a static interface

with inertial effects present. Suppose, as in Section 3.6, that v0 in (3.1.1)

is zero; the parameter v. is, as such, positive. Consider, now, the inertial initial

boundary value problem formed by (3.5.2), (3.5.3) and (3.5.6)-(3.5.8). Observe

that, since vo = 0, (3.5.3)2 and (3.5.6) are replaced by (3.6.1)1 and (3.6.1)2, re-

spectively. Furthermore, (3.5.3), simplifies to its inertia-free counterpart (3.5.10).

In place of a normal mode analysis like that performed in Section 3.6 an energy

analysis will be used in this section to show that, when inertial effects are ac-

counted for but v0 = 0, the base process described by (3.1.1)-(3.1.3) is linearly

stable with respect to all perturbations of the type put forth in Section 3.2. Pre-

liminary to doing so define the total energy C: [0,t.) --- +R by

C(t)= EK(t) + Ew(t) + ET(t) VtE [0,t.), (3.7.1)
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where EK : [O,t.) -_i?+ is the kinetic energy given by

EK(t) = - J J tb(Xi,X 2 ,t)dzdz 2 Vt E[O,t.), (3.7.2)

-00 -00

Ew: [0,t.) --o.]R+ is the elastic energy defined via

+00 0

Vt e [0,4), (3.7.3)

and ET: [0,4) -.A is the thermal energy given by

+0-0 0 +0-oo
E (t) = 1f fciT2(zlx 2 ,)dxIdZ 2 t+ I JrT2(X1,X 2 ,t)dxd 2

-00-0 -O O 00

t ++0000

o -00 0

+0+00+0

+WJ1 kr~ (X, X2, t) (z1 ,X , ~X 2 td X

0-00 0

Vt E [0, t). (3.7.4)

The constant t which appears in (3.7.2)-(3.7.4) is assumed to be positive and

carries units of length. It is clear from (3.5.7)1,2,3 Slid the stipulated square
integrability of , w and 4) that ((0) exists In writing (3.7.2-(3.7.4) it is

assumed, however, that there exists a positive time t,, which may possibly be very
small, such that the relevant integrals exist on [0,t.). A reasonable definition of

•~~~~~~ -00 0~~ m mmmmmm mmm m m mm m m
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linear stability is, at present, that C remain bounded on JR+. A straightforward

but long calculation which makes use of (3.5.8), (3.6.1) and, recalling the foregoing

remarks regarding the coincidence of (3.5.3)1 with (3.5.10) when vo = 0, show

that the power t is given by

+00

t(t) = -pv. f h2 (X 2 ,t)dX2 Vt E [0, t.). (3.7.5)

-00

Since v0 = 0 at present, t(t) < 0 for all t in [0, t.); under these circumstances the

interval over which C is defined can be extended incrementally to R+ leading to

the following inequality:

t(t) < 0 Vt E Iq+. (3.7.6)

Evidently, then, by the definition of linear stability given above, the base process

at hand is stable with respect to all perturbations under consideration if the

associated phase boundary is static prior to the instant at which the perturbation

is imposed and inertial effects are accounted for.

Note that a normal mode analysis akin to that performed in Section 3.6

produces the following dispersion relation

p - 1(Fo(r,p) + pGo(x,p)) = 0, (3.7.7)

where Fo : IJR x C -¢ 0 is defined by

Fo(r.,p) = a tbu( b V(tp) E I? X ,a 1bz ; I rc+ p-2b + , b, 0 + p2 / b2, V p R×¢
(3.7.8)

and Go is as defined in (3.6.5). A study of this dispersion relation allows the

recovery of the results obtained by the foregoing energy analysis.

The combined results of this and the preceeding section are consistent with

those presented by FRIED [9] in the purely mechanical analogue of the problem



-45-

considered here. Hence, when vo = 0, the inclusion of thermal effects does not al-

ter the linear stability of the base state (3.1.1)-(3.1.3) from its obvious mechanical

analogue.

3.8. Normal mode analysis for a base process involving a moving

interface with or without inertial effects. Suppose that v0 in (3.1.1) is

positive. Consider now both the inertia-free intial value problem consisting of

(3.5.9), (3.5.2)3,4, (3.5.10), (3.5.11), (3.5.3)3,4, (3.5.11), (3.5.7)3,4 and (3.5.8) and

the inertial initial value problem comprised by (3.5.2), (3.5.3) and (3.5.6)-(3.5.8).

Note that, in both of these cases, (3.1.5)3, (3.1.11) and the assumed positivity of

v0 imply that to = 0. Hence, in the inertia-free case, (3.5.11) and (3.5.12) simplify

as shown below

[kT,1 I + pvo[c]T =pvo(77 - 7)((a2w,i)) on I,

=7 - -f, ((a2 w,I)) + voT on I, (3.8.1)

while, in the inertial case, (3.5.3)2 and (3.5.6) become

[kT,l I + pvo[c]T = pvo(-y - -yi)(((a 2 - vO)w,i)) on I,

7 r (ao 1(3.8.2)
V.

Next, a normal mode analysis analogous to those undertaken in Section 3.6 and

[9] will be performed based upon the following representation of a solution to the

relevant partial differential equations, jump conditions and kinetic relation:

W(XI,x 2 ,t) = W,-e+((I-"O9)zei#CZ2ept V(zi,X 2) E A', t E 1 +,

+Ve(-vO)ze'Kz2eP' V(X 1,z 2 ) E It, t E J1 .,

T(x1,x 2 ,t) = ete+(C-vot)zleifz2et V(X1,X 2 ) E A', t E R+, (3.8-3)

Ore-('VOt)z eifz2e Pt V(XI,X 2 ) E Ai, t E .lR+,

a(X2 ,t) = SCiKZ2ept V(X2 ,t) E R x R+ .
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Substitution of (3.8.3) into the equations appropriate to the equations appropriate

to the inertia-free and inertial cases gives, respectively, the following dispersion

relations

p+ -C 1 (1 + veG(x,p)) =0,
V* (3.8.4)

p + F(1,p) (1 + voG(K,p)) = 0,

where G : JR x d(V- C and F : 1R x C --- G are given by

G(K,p) = 2v. V(Cp) E IR x C,
c, - cr + cg,(K, ,p) + crgT-(,,p) (3)8.x)

(3.8.5)
(,- 7 r)2(f( K,P)fr(K,P) + v20p 2 ) V(r,p) E JR x C,

F(,,p) = ,(~K,p) + fr(icp)

where g: JR x C - C and g, : R x C --. C are given by

91( K ,P) X/ = 4 0 ^ , 2 + , p V x ) E f , 3 8 6gr(K,p) = 1+A K2 + arp) V(Kp) E JR x ,

1)0 (3.8.6)

andfg,) J#-f/(df0r:JR e adpne (dpa R×¢

fg~i~p)= ~a~ v~)bc 2 +a~ 2  V~c~p e R xCV, (3.8.7)

f r (K,p) = a- va)bir+ a 2  V(KP) E R x .

When v# = 0 the dispersion relations in (3.8.4) reduce to

p+ =0I
V" (3.8.8)

P + F(, ,p) = o,
V*

Observe that (3.8. 8 )1 and (3.8.8)2 are structurally identical to the inertia-free

and inertial dispersion relations obtained by FRIED [9] in the purely mechanical

analogue of the investigation at hand. Hence, if the kinetic response function
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or 0 is chosen so that vO = 0 then the linear stability of the base process at hand

remains unaltered from that of its purely mechanical analogue by the presence of

thermal effects; specifically, when v,9 = 0, the linear stability of the base process

(3.1.1)-(3.1.3) is determined entirely by the sign of v,. That is, v. < 0 is a

necessary condition for the base process to be linearly unstable with respect to

any perturbation of the type introduced in Section 3.2 and, further, v, < 0 is a

sufficient condition for the base process to be linearly unstable with respect to all

but a small class of very special initial disturbances contained within the full set

under consideration. Note, in particular, that ve = 0 if either P depends only

on e through the ratio f/O or 0 is independent of 0. Assume, henceforth, that

Vy € 0.

The branches of the square roots which define g and g,. are chosen so that,

for p in R1,

+ 4(atC 2 + ap)>0 = gt(,c,p) >0 VxER9,4a2 (3.8.9)

1+4asc +-rP)>0 = g r(t,p)>0 VE R,
V0O

from which it is clear that, for p in I,

9Z(1+ 4 (a2K2 + alp)) > 0 ='3(iK=)>0VKE1?0 >(3.8.10)

3Z(1 + -4(a21C2 + arp)) > 0 = ?g(D=)>>0Vc 1?

Evidently, then, (3.8.10) and (3.8.5)i yield the following result:

R(p) > 0 .== R(vG(,c,p)) > 0 Vic E R. (3.8.11)

The square roots which appear in fl and f, are defined via the principal branch

of the complex logarithm. It is, therefore, clear that

R(p) > 0 = R(F(,c,p)) > 0 Vic E R. (3.8.12)
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An immediate consequence of (3.8.11) and (3.8.12) is that one or both of the

parameters v. or v,9 must be negative in order for a root p in 0 of either (3.8.4), or

(3.8.4)2 to have a positive real part. It is also obvious, from (3.8.11) and (3.8.12),

that if both v. < 0 and v# < 0 then there exists a root p in C7 with R(p) > 0 to

both of (3.8.4) regardless of the value of the wave number r. in JR \ {0}. A more

subtle condition sufficient for the existence of a root p in Cv to either of (3.8.4)

occurs under the assumption that v. > 0, vo < 0 and v.jvt,9/ct > 1. Specifically,

when v. > 0, vo < 0 and v.1vol/ct > 1 it is, then, possible to show that there

exists a root p in 0 to both of (3.8.4) provided the wave-number K. in R \ {0} is

sufficiently small so that the inequality

CUCr + f1-(KP) + fr(KP)< 2v*voI (3.8.13)
ct + Cr 1+ . 1 + i1 cI+Cr

Ci Cr

holds. A similar condition which guarantess the existence of a root p in CT to either

of (3.8.4) occurs under the assumption that v. < 0, vo > 0 and Iv.vo/ci < 1.

In this case there always exists such a root to either of (3.8.4) as long as the

wave-number Kc is sufficiently large so that the following inequality is satisfied:

- Cr + Mf(,p) + fr(,P) >21v*Iv, (3.8.14)
cI + cr 1 + 1 + cI+c.

Cl Cr l c

The foregoing discussion shows that, unlike the purely mechanical process

investigated in [91, the present context is not, when v0 > 0, amenable to the

statement of necessary and sufficient conditions for the linear instability of the

base process at hand. The sufficient conditions which have been presented above

are, however, of interest.

3.9 Conclusion. In 19] it is demonstrated that when the purely mechanical

analogue of the parameter v. is positive the appropriate purely mechanical version

of the base process considered here is linearly stable with respect to all perturba-

tions which are considered in that context. The last of the conditions sufficient
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for the linear instability of the thermoelastic base process (3.1.1)-(3.1.3), viz.,

V.> 0, v<,> 1,C - c. + f(KP) + f(KP)< 2v,Iv (3.9.1)
cl cI + C, 1+ L 1 + a c + C,.

where the parameters v., v#, ct and cr are as defined in (3.4.10), or (3.4.11)1,

(3.4.10)2 or (3.4.11)2, (3.5.5)4 and (3.5.5)3, respectively, and the functions fi and

fr are as defined in (3.8.7), is, hence, arguably the most interesting of the three

which are presented. It exposes what might be described as a competition between

mechanically stabilizing and thermally destabilizing effects and an explicit depen-

dence of growth-rate upon wave-number. Significantly in these circumstances,

it is the low wave-numbers (that is, long waves) with respect to which the base

process is linearly unstable. Under conditions consistent with (3.9.1), a moving

planar phase boundary, therefore, tends to prefer a highly wrinkled-i.e., plate-

like or dendritic-morphology. Instability of this variety is also found in models

for dendritic crystal growth and solidification (see [13-14] and [16]).

In analogy to [9] where the physical plausibility of a purely mechanical kinetic

response function for which the parameter analogous to v, can be negative is

addressed, it is now natural to consider the question of whether it is physically

reasonable for a kinetic response function to depend monotonically on its first

argument-so that v, is always positive and the related purely mechanical process

is linearly stable-but non-monotonically on its second argument, in which case

v# may be negtive. The experimental work of CLAPP & Yu [5] which studies, in

part, the dependence upon temperature of transformation kinetics in a particular

alloy capable of sustaining displacive solid-solid phase transformations indicates

that the role of temperature in such kinetics is very complicated. In fact, despite

what appears to be a very careful experimental procedure and analysis, CLAPP

& Yu [5] observe a severe scatter in the data which measure the dependence of

phase boundary velocity upon temperature. This scatter indicates there may not

be a simple functional dependence of interface normal velocity upon temperature.

With regard to the issue at hand, these experimental results seem to indicate that,
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if a kinetic relation of the form (2.5.1) or (2.5.2) is insisted upon, monotonicity

of a kinetic response function V(,, .) for fixed iP in I? or (V, .) for fixed V in R

may be the exception rather than the rule.
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Figure 1: Graph of the shear stress response function 'r(-, 6o) for
fixed 00 in (0,0m).
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Figure 2: Plot of the shear strain-temperature quadrant.
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